

TP P8 Forces et vitesse

NOMS:

Chapitre 4P Livre pages 190-210

Objectifs:

- Représenter des vecteurs vitesse d'un système lors d'un mouvement.
- Exploiter le principe des actions réciproques.

I. Mouvement d'un ballon aéroglisseur

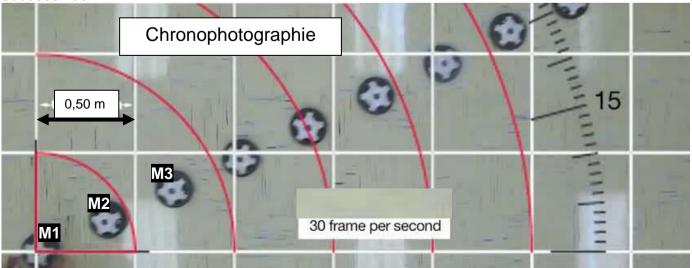
Système : {ballon aéroglisseur}

Référentiel : le sol, référentiel terrestre

Inventaire des forces : Lorsque la main NE touche plus le ballon,

- \vec{F} force de poussée de l'air
- \vec{P} force poids exercée par la Terre
- Faire glisser le ballon aéroglisseur sur la table, en le faisant tourner sur lui-même.
- Q1. Un point du ballon possède une trajectoire plus simple que les autres. Où se situe ce point ?
- Q2. Quel adjectif, relatif à la trajectoire du centre du ballon, caractérise son mouvement ?
- Q3. Deux élèves ont des points de vue différents sur l'inventaire des forces.

Mathias: « Il faut ajouter la force exercée par la main! »


Laetitia: « Non, est-ce que ta main est capable d'agir à distance sur un objet ?! »

Qui a raison?

Q4. On schématise le ballon aéroglisseur par un rectangle ci-contre \rightarrow Représenter ci-contre les deux vecteurs forces \vec{F} et \vec{P} subies par le ballon.

- > Faire valider cette réponse par le professeur.
- ightharpoonup Lire la vidéo « BallonAeroglisseur.mp4 », à cette adresse : http://acver.fr/puck On a réalisé la chronophotographie du mouvement. Il s'écoule $\Delta t = 0.33$ s entre deux positions successives.

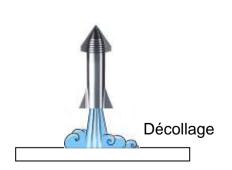
Q5. A l'aide d'une règle et de l'échelle des distances indiquée sur la chronophotographie, calculer la distance M₁M₂ parcourue par le centre du ballon entre les deux premières positions.

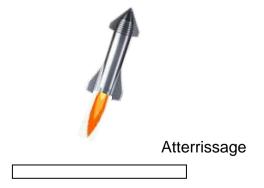
Q6. Calculer la valeur de la vitesse
$$v_1 = \frac{M_1 M_2}{\Delta t}$$
 en m.s⁻¹ puis en km.h⁻¹.

- **Q7.** Calculer la valeur de la vitesse $v_5 = \frac{M_5 M_6}{\Delta t}$ en m.s⁻¹.
- Q8. Quel adjectif, relatif à la vitesse du centre du ballon, caractérise son mouvement ? Justifier.
- **Q9.** Sur la chronophotographie page précédente, tracer la trajectoire du centre du ballon. Confirme-t-elle la réponse à Q2 ?

II. Le vecteur vitesse

Le vecteur vitesse est une flèche qui permet d'illustrer le mouvement d'un point.


Le vecteur vitesse $\overrightarrow{v_i}$ au point numéro i est donné par la formule $\overrightarrow{v_i} = \frac{M_i M_{i+1}}{\Lambda t}$ où $\overline{M_i M_{i+1}}$ est le


vecteur déplacement.

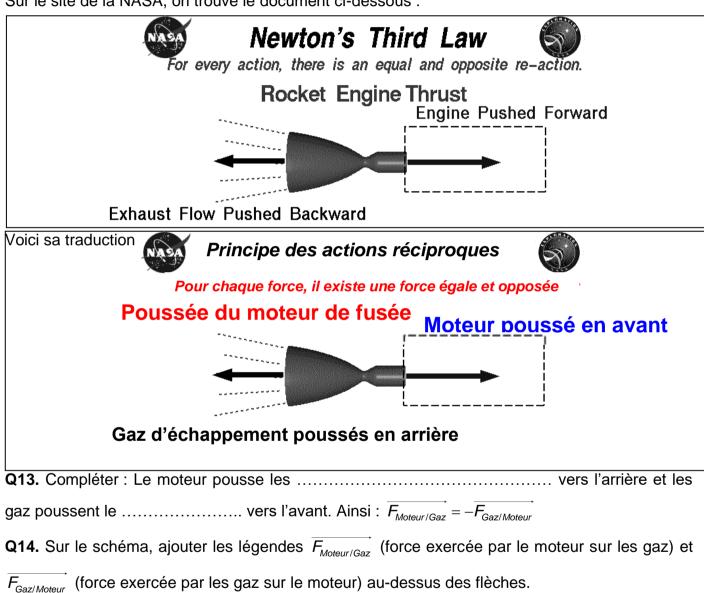
Exemple: $\overrightarrow{v_1} = \frac{M_1 M_2}{\Delta t}$

- son sens est celui du mouvement
- sa direction est tangente à la trajectoire
- sa norme est indiquée par la longueur de la flèche

Q10. Visionner les décollage et atterrissage de la fusée Starship : http://acver.fr/starship Représenter ci-dessous un vecteur vitesse du centre de la fusée pour chaque situation. Système : {fusée Starship} Référentiel : le sol, référentiel terrestre

Q11. Sur la chronophotographie, page 1, et en utilisant l'échelle 1 cm \rightarrow 1 m/s, tracer une flèche vecteur vitesse $\overrightarrow{v_3}$ en position 3 et une autre $\overrightarrow{v_5}$ en position 5.

III. Principe des actions réciproques


Expérience : « Voiture ballon »

Gonfler le ballon, après avoir désinfecté son embout à l'alcool.
 Lâcher la voiture.

Q12. Décrire très brièvement cette expérience.

Sur le site de la NASA, on trouve le document ci-dessous :

IV. Comment une fusée parvient-elle à décoller ?

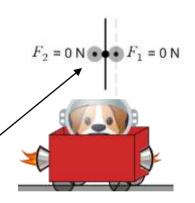
Visionner le décollage de la fusée Atlas V : http://acver.fr/liftoff
 Système : {fusée Atlas V}
 Référentiel : le sol, référentiel terrestre

Q15. Décrire le mouvement de la fusée avec deux adjectifs. Justifier.

La fusée subit deux forces verticales.

- La force de poussée des gaz \vec{F} ,
- La force poids \vec{P} (due à l'attraction gravitationnelle de la Terre).

Q16. Pour que la vitesse augmente il faut qu'une des forces l'emporte sur l'autre Quelle est la force qui possède la plus grande valeur ?


Q17. Sur la photographie ci-contre, représenter ces deux forces au centre de la fusée avec des flèches de longueurs adaptées.

V. <u>Influence des forces sur la vitesse</u>

Système : {chariot + chien} Référentiel : le sol, référentiel terrestre

Ouvrir la simulation à cette adresse : http://acver.fr/xbi

Modifier les valeurs des forces horizontales et opposées $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ afin d'obtenir d'abord un mouvement accéléré puis ensuite un mouvement uniforme.

Q18. Noter les valeurs des forces qui ont permis d'obtenir un mouvement accéléré.

$$F_1 = F_2 =$$

Q19. Noter les valeurs des forces qui ont permis d'obtenir un mouvement uniforme.

$$F_1 = F_2 =$$

Q20. Quelle condition doivent respecter les forces pour que le mouvement ne soit pas uniforme ?

BONUS : Avec la simulation, indiquer quelle est l'influence de la masse sur la valeur de l'accélération (si on ne modifie pas les valeurs des forces au cours de mouvement) ?